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The asphericity of star polymers: a renormalization group 
study 
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Fachbereich Physik, Univenit~tt-Gesamthochschule-Essen, Pastfach 103 764, D-45117 Essen, 
Fedeal Republic of Germany 

Received 31 August 1993. in final form 12 November 1993 

Abstract. The asphericily of a flexible mono disperse^ f-star polymer in d = 3 is calculated in 
the framework of the standard two-parameter model in the asymptotic limit of infinite molecular 
weight. In contrast to previous analytical investigations we employ an asphericity meas,ure 
which tnkes into account that size and shape of the polymer coils are strongly correlated. We 
consider ideal non-interacting (NEV) star polymers as well as molecules with excluded-volume 
(EV) interaction by means of renormalized perturbation theory. We show lhat in both cases the 
mean asphericity parameter takes a universal numerical value when the molecular weight tends 
to infinity. The same holds for the corresponding asymptotic distribution functions. which are 
proved to be universal functions too. These universal properties depend only on the lopology, 
i.e. the number of m s  f. For NEV stars we obtain a decrease of the asphericity with increasing 
number of arms. The numerical values are in excellent agreement with results of previous 
computer simulations. From the extrapolation of the e-expansion results f o r w  stm we conclude 
that the influence of the EV on the shape asymptotics qualitatively depends on the number of 
arms. For f = 1 2nd f = 2, i.e. a linear chain, we reproduce a previous finding that the 
EV enlarges the asphericity of the chains by about 5%. For f > 3, however, we observe a 
decrease of the asphericity due to the EV which is intuitively appealing because of the smng 
sleric repulsion for large values of f. These results are also in good agreement with previous 
computer experiments. 

1. Introduction 

Investigations on the properties of star polymers in dilute solution have made considerable 
progress during the last few years. Besides refined experimental techniques, computer 
simulations 1141 and field-theoretic renormalization group calculations [5-8] have become 
especially useful. Star polymers are the simplest representatives of the wide class of 
branched polymers, but on the other hand they are important as building blocks of polymer 
networks. 

In dilute solution flexible polymers form crumpled coils with a global shape which 
differs significantly from spherical symmetry on short time scales. This was first recognized 
by Kuhn [9] for linear polymers in 1934 and has been the focus of  many analytical and 
numerical investigations since then. High flexibility and strong thermal fluctuations make 
it difficult to measure such shape properfies directly. It is nevertheless believed that the 
equilibrium shape of the polymer coils plays an important role in certain models explaining 
viscous flow and other hydrodynamic properties of polymeric fluids [lo-121. 

To begin, consider a fixed configuration of a star polymer consisting of f linear chains 
connected at one central vertex. Each single chain contains ( N  - 1) repeating units, say 
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Kuhnian segments. The end points of these segments are denoted by d-dimensional vectors 
R? with Cartesian components 

R?) = (x:!, x:! . . . , x~PJ) i = 2, . . . , N ;  a = I ,  . . . , f . (1.1) 

Additionally the second end of the firsrsegments which form the vertex of the star polymer 
are denoted by RY). The global shape of such a configuration can be characterized 
conveniently by the d eigenvalues qu of the radius of gyration tensor Q 113-151 which 
can be generalized for star polymers by 

The present calculations are confined to a very simple invariant of Q quantifying the 
deviation of a fixed configuration from spherical symmetry. This so-called asphericity 
1161 

vanishes for configurations with spherical symmetry (all eigenvalues qc equal) and takes 
its maximum value 1 for completely elongated shapes (all eigenvalues zero except one). 4 
denotes the arithmetic average of the d eigenvalues and is closely related to the well known 
radius of gyration ij = R:/d. For analytical calculations it is advantageous to rewrite (1.3) 
in the fonn [17] 

d tr(Q2) 
Ad = -- 

d - 1 (trQ)2 

with the traceless tensor 

In dilute solution thermal fluctuations prevent Ad from taking a sharp value. Even in the 
limit of infinite molecular weight the asphericity is broadly distributed around a mean value 
which can, for example, be directly measured in computer experiments. 

This mean value ( A d )  has been calculated for the first time analytically for non- 
interacting linear polymers 1181. The simple method which allows the averaging of ratios 
such as (1.4) with fluctuating numerator and denominator (within a Gaussian model) was 
later used to calculate this shape parameter also for linear polymers with EV interaction 
by means of renormalized perturbation theory [19]. The results of these calculations 
corroborated the findings of Monte Carlo simulations [ZO, 211 stating the asphericity to 
be enlarged by the EV asymptotically by about 5-10%. Previous analytical investigations 
underestimated this effect as they used a simplified mean asphericity measure [ 171 
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The reason for this difference is the neglecting of important correlations between size and 
shape of the polymer coils in (1.6). As pointed out by Cannon et a1 1211 this definition 
overestimates the influence of larger polymer configurations on the mean shape properties 
and suppresses the influence of compact ones. This artificially leads to larger absolute 
values for the mean asphericity, whereas the influence of the Ev on the asymmetry is 
underestimated by nearly one order of magnitude [19,21]. After all, the large difference 
between the two mean asphericity measures (Ad)  and id (about 30% for NEV linear chains 
in d = 3) illustrates the~strong fluctuations in the shape of diluted polymers. 

In this paper we apply the methods of [18] and [19] to star polymers and calculate 
for the first time analytically the mean asphericity ( A d )  for NEV and EV stars. We show 
that in both cases the mean asphericity takes a universal numerical value when the chain 
lengths tend to infinity. These universal numbers only depend on the space dimension d 
and the functionality f, i.e. the number of arms. The same holds for all higher moments of 
the asphericity. By that means the distribution function of A d  is proved to be a universal 
function, too. 

In section 2 we calculate exact exptessions for the mean asphericity of non-interacting 
star polymers which are compared with the results of Monte Carlo simulations [ZO]. Here we 
also take the opportunity to explain the method of ratio-averaging [ 181 leading to a somewhat 
unusual propagator which we later need to set up the perturbation series. The next section 
deals with the asphericity of EV stars and starts with some remarks on universality, the 
method of renormalized perturbation theory and the E-expansion. In the second subsection 
we present explicit results of the first order &-expansion for (Ad=4& and the extrapolation 
to the physical dimension d = 3. Comparing these results with data from Monte Carlo 
simulations [20] and the numbers from the non-interacting case, we discuss the influence 
of the EV on the asphericity of star polymers. The last section summarizes our results and 
contains some concluding remarks. 

2. Ideal star polymers 

To describe the asymptotic shape properties of non-interacting ideal star polymers we choose 
one of the simplest representatives from the universality class of Rw-like polymer models 
without any hue many-body interaction. As usual, the Kuhnian segments are modelled as 
simple harmonic springs tied together at their end points. The Hamiltonian of this model 
is given by 

a=l 

where ho denotes one single Cartesian contribution 

To guarantee star topology for this model of f independent Gaussian chains all 
thermodynamic averages which are denoted by ( . )O are calculated under the restriction 

(2.3) 
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Besides, equation (2.3) eliminates divergent contributions from the massless translational 
mode, since we are only interested in translational invariant properties. 

To average ratios like (1.4) with fluctuating numerator and denominator with a statistical 
weight induced by (2.1) and (2.2) it was shown to be useful to exponentiate the denominator 
by the identity 1181 

With m = 2 the average of (1.4) can be rewritten as [IS] 

where ( . )o,~ is calculated with a modified Hamiltonian 

Note that (2.6) is also of the form (2.1) with 

N f  

(2.7) 
Y 

r,,=la.b=l 

Since 
simple orthogonal transformation (see appendix A) 

is quadratic in X, too (which is the crucial point of this trick), we can use a 

xp 4 (2.S) 

to cast the Hamiltonian in diagonal form 

with mode energies given by 

EV(y) = t-zsinz (-) X V  + - Y . 
2N f N  

(2.10) 

It is important to notice that ~ " ( y )  does not depend on the mode index t which reflects 
the permutation symmetry of the polymer arms. As <io) describes translations of the whole 
polymer star, this mode gives no contribution in (2.9). 

According to (2.9) the second average in (2.5) can now be expressed in terms of 
the Rouse eigenmodes qy(i) of a single chain and the energies sV(y). The result of this 
calculation, which we explain in appendix E, reads 

(2.11) 
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As we are only interested in asymptotic properties, the continuum limit 

N + W  e +  0 with N e 2 -  L fixed (2.12) 

simplifies OUT results considerably. Introducing 

as a new integration variable, equation (2.11) takes the final form 

(2.13) 

(2.14) 

For f = 1 equation (2.14) obviously reduces to the result for linear chains [18]. The same 
holds for f = 2 after proper rescaling of the integration variable j3. 

The remaining first average in (2.5) involves the calculation of four-point functions with 
the somewhat unusual Gaussian weight associated with 'Ho,~.  Using the continuum version 
of (1.2) 

(2.15) 

Wick's theorem and simple combinatorics lead to 

(2.16) 

where 

c;qt, t') = X f ) ( t )  - X f ' ) ( t ' ) .  (2.17) 

Here we used the diagonality of the two-point function in the Cartesian indices 

( [ x p ( f )  - X ~ ' ( O ) ] [ X $ ) ( t ' )  - Xf)(O)]),, ,  

= C?,([X:"'(t) - X:" ' (O)][Xf ' ( t l )  -.xy(o)])o,y 
= Sap G(a, 6;  t ,  t') . 

(2.18) 

In appendix B we show that the propagator for our model is given by 

G(u, b;  t ,  t') = -- +cosh [ B  (1 - It - t ' l /L)]  + 4 cosh[p (1 - (t + t ' ) / L ) ]  
f p sinhp 2L I 

-cosh[j3(1 - t / L ) ]  -cosh[j3(1 -t ' /L)]+coshp 

- sinh [ p  (1 - It - t ' , / L ) ] )  (2.19) 
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Note that the two-point function only depends on whether the two segments at f and t' 
belong to the same or to different arms of the star polymer. The case of a linear chain is 
also included in (2.19) for f = 1 or ~f = 2 (after proper transformation of the segments 
indices and rescaling of L and p ) .  

Substituting (2.18), (2.19) in (2.16), the summations over the arm indices are easily 
carried out. The remaining integrations yield the quite simple result 

- 4(f - 2)pZ cosh(2,fl) f f f i  sinh(4p) - 2cosh(4p)}. (2.20) 

Together with (2.14) this leads to our final formula for the mean asphericity of a NEV f-star 
polymer in d dimensions 

- 4(f - 2)p2 cosh(2p) + fp sinh(4p) - 2cosh(4p)]. (2.21) 

As expected, this asymptotic mean value only depends on f and d, whereas the chain length 
L drops out in the integral (2.5). For f = 1 and f = '2 equation (2.21) reduces to the result 
for NEV linear chains [18]. 

In table 1 we listed our estimates for the mean asphericity in d = 3 for arm numbers 
up to f = 6 which we calculated via numerical integration of (2.21). The next column 
shows the data from Monte Carlo simulations by Bishop et a1 [ZO]. We also included the 
results of a previous analytical investigation by Wei and Eichinger [22] who calculated the 
asphericity approximant (1.6) for NEV f-stars. 

Table 1. Estimates for the mean asphericity in d = 3 for am numbers up to f = 6. 

f &act MC 

1 0.3943... 0.39720.001 0.5263 ... " 

2 0,3943 . . .  0.39710.001 0.5263 ... 
3 0.3044 ... 0.304?~0.001 0.3699 ,,... , , , , , , , ,, , ,  
4 0.2427 ... 0.242i0.001 0.2732 ... 
5 0.2006 ... 0.199ztO.001 ,0.2195.,. , ,  

6 0.1706 ... 0.17li0.001 0.1834 ... 

The agreement of our analytical result for { A d ( f ) ) o  with the extrapolated asphericities 
from the MC experiment is very good. Both data show a smooth decay of the mean 
asphericity with increasing values o f f .  Even when there is no repulsive interaction between 
the segments, star polymers with high functionality are more spherical than those with a 
smaller number of arms. Figure 1 illustrates this trend and shows {A3( f ) )o  as a continuous 
function of f. Additionally, we plotted the values from the MC simulation. 

The comparison of the numerical values for (A3(f))o and .&.o(f) again shows that 
the mean asphericity is overestimated by (1.6) due to the enhanced influence of larger 
polymer configurations. As this difference shrinks from 33% for linear chains to less than 
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and (2.21) for large values of f show the same leading behaviour of the mean asphericity, 
which vanishes like f -’. 
3. Star polymers with EV interaction 

In the limit of infinite molecular weight the global properties of polymers in a good solvent 
are dominated by a short-range repulsive force preventing the segments occupying the 
same position in space. ’ In this section we are going to investigate the influence of this 
EV interaction on the shape asymptotics of star polymers. For that purpose we set up a 
perturbation expansion for the mean asphericity (Ad) up to first order in the EV potential, 
which we conveniently choose as 

The simple continuous form of V is justified by universality in the asymptotic limit. The 
perturbation theory for the mean asphericity 

is well defined if all segment indices in the perturbation expansion of (3.2) are at least 
separated by some microscopic cutoff 1231. For technical reasons we will use a dimensional 
regularization scheme [23] to calculate an estimate for (Ad) which orders asymptotically in 
powers of E = 4 - d [19]. 

Note that the second mean value in (3.2) now involves the usual Hamiltonian ‘H = 
‘Ho + V ,  whereas the first one is calculated with a weight according to Xy = ‘?lo,,. + V (see 
(2.6)). 
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3.1. Renormaluation and universality 

It is well known that a naive perturbation expansion in U fails in the limit of diverging chain 
lengths when the space dimension d is less than four. The reason is that the expansion 
parameter itself, which is not U but u L ~ - ~ ,  diverges in the asymptotic limit. As usual we 
shall adopt the renormalization group (RG) transformation to circumvent this problem. By 
that means the universal properties of star polymers in the limit L --f cm are linked together 
with those of molecules where each arm effectively consists of only one segment. After this 
mapping simple perturbation theory in some renormalized coupling constant works [23]. 

In the following we will make use of the close relation of polymer chain statistics 
to a (Landau-Ginzburg-type) field theory in the limit n + 0 [24] and employ a well 
developed field-theoretic renormalization scheme [25,26]. In appendix C we show how 
mean values, which typically appear in the calculation of any shape parameter, are related 
to special composite operators in field theory. From the well known renormalization of 
these operators we conclude that all w-divergencies (simple pole terms in E in dimensional 
regularization) of the perturbation expansion of (3.2) can be absorbed in a reparametrization 
of the chain length L and the coupling constant u which read 

t = p-*(zt)-' LR 

u = 1611~p~Z. U". 

(3.3) 

(3.4) 

By that means the two mean values in (3.2) can now be expressed by two dimensionless 
functions F, and FZ 

which are finite for & --f 0 if their renormalized arguments are kept fixed. Here @ denotes 
some arbitrary inverse length scale. All &-poles are now contained in some Z-factors of the 
reparametrization which are known from n-component 44 field theory in the limit n -+ 0 

U" 
2, = 1 + $; + 0 ((U")') 

U" 
2, = 1 + $; + 0 ((U",') . 

(3.7) 

(3.8) 

The reparametrization (L, U) + (p, LR, uR) is not unique since the inverse length scale p 
is arbitrary. A simultaneous variation of (p ,  LR, uR) with ( L ,  U )  kept fixed then implies 
'renormalization group' equations for renormalized quantities [23,25-271. For F1.2 in (3.3, 
(3.6) these read 

a + B(uR)- -I- $(Z") a U R  
f i  (LR, U", p-'y) = 0 (3.9) 

with E, = -4, E2 = 0 and the Wilson functions given by ,6(uR) = p3gaRlL,u 
and $(U")  = paglnLRIL,u. As usual equation (3.9) can be solved by the method of 
characteristics. Defining a variable inverse length scale 

fi(h) = (3.10) 
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with a flow parameter A, equation (3.9) can easily be solved if we also introduce flowing 
renormalized variables UR(A) and i R ( A )  which obey 

(3.11) 

(3.12) 

P(iiR(A)) = -ZU -R (A) 

8(iiR(h)) = -- d hiR@) 

UR(0) = U  R 

LR(o) = L R . 
.~ dA 

Then the solution of (3.9) simply reads 

F, ( L R ,  u ~ ,  w-*y) = F, @'(A), i i ~ ~ . ) ,  (e-AW)-'y) e-'!'. (3.13) 

The zeros of (3.11) determine the fixed-point value of ER(A). For E z 0 and not too large 
positive values of U one gets 

(3.14) iR = $ E + 0 (E') 

which is an attractive infrared-stable fixed point as h + CO. 
The second flow equation is formally solved by 

A 
ER@) = LRexp 1-1 dh'lt(ER(Af))] . (3.15) 

As we are interested in LR + CO, equation (3.15) allows us to choose h so that i R ( A )  = 1, 
i.e. the long-chain problem is thereby mapped on a simple short-chain problem. This 
requires A -+ CO since d = > 0. We can now determine the behaviour of the mean 
asphericity under the RG flow. For LR + 00 equation (3.13) implies 

(3.16) A+- -2 
~i ( L ~ ,  uR, p-'y) N h (e p y) e-&' 

@,(Y)=F2(1, iR,Y).  (3.17) 

with a non-universal flow factor eh, which depends on uR = ZR(O), and 

Respecting (3.2), (3.5) and (3.6), the mean asphericity is now given by 

a(LR, U") := - Lmdy Y K4 4 (LR, uR, K'Y) FZ (LR, uR, @-'Y) . (3.18) 

As the Fi are finite functions for E -+ 0 the same holds for (3.18) as a function of 
renormalized parameters. Substituting Y = eUP-'y equations (3.16) and (3.18) yield 
the LR + CO limit of the mean asphericity 

d - 1  

a(1, U 'R ) := - l a d y  Y tl/i(Y) &(Y). (3.19) 

Note that the non-universal flow factor eh drops out in (3.19) so that a( l , iR)  takes a 
universal numerical value at the EV fixed point depending only on d and f. In the next 
subsection we show how these numbers can be calculated within a first-order &-expansion 
and extrapolate the results to d = 3. 

Finally let us draw another important conclusion. In appendix C we demonstrated how 
the renormalization of products like (e.,@, . . ., Q.,p,) can be derived from the renormalization 
of special composite operators in field theory. The same arguments apply when higher 
moments of the asphericity ((Ad)'") are calculated. Substituting dy y (tr (Q'))? in (3.2) by 
dyyh- ' ( [ t r (Qz)~)v  (see also (2.4)) it immediately follows that the flow factor e* always 
drops out in the anaiogous Y-integral. By that means, all higher moments of A d  are proved 
to take universal numerical values at the EV fixed point so that the asymptotic distribution 
function P ( A )  

d - 1  

(S(A - Ad)) is a universal function, too. 
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3.2. &-expansion and extrapolation to d = 3 

In this subsection we actually cany through the RG program of the previous section to 
calculate an estimate for the mean asphericity of EV star polymers. Below d = 4 ( E  z 0) 
the fixed-point value iR deviates from zero and a(1, iR) takes a different numerical value as 
its random walk counterpart a(1,O). Ford =- 4 the E v  is an irrelevant interaction (iR = 0) 
so that mv and EV stars show the same shape asymptotics. 

To eliminate trivial d-dependent factors we perform a systematic &-expansion to first 
order of the ratio a(], 2R)/a(l, 0) and try to extrapolate the results towards d = 3 [19]. 
According to (3.2) we need the first order in V contributions to (3.5) and (3.6). which are 
given by 

(e-yuQ)l = (e-yvQ)a [(V, -(%.,I (3.20) 

(tr(Q2))l.y = -MQ2) %.? + (tr(Qz))a,y(%,y ‘ (3.21) 

The strategy to calculate these averages is quite analogous to that of section 2. Writing V 
in its Fourier representation 

where 

(3.22) 

(3.23) 

a Taylor expansion in k leads to simple Wick contractions within Gaussian (0, y)-statistics. 
The .resulting expressions can be summed up again and the k-integration can easily be 
performed. For (3.20) we find 

(3.24) 

where we have introduced the abbreviation 

Si  (I ’ h )  ( t ,  f’) = +([Cf .”( t ,  tf)]2)o.y = 4 C(a, a; t ,  f) - C(a, b; t ,  t’) + - G(b,b; t‘, t’) 
(3.25) 

(see also equation (2.17)). The second,mean value (3.21) involves the lengthy, but trivial, 
calculation of some six-point functions, resulting in 
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with the notation 

L jd8 dt dt'dtl dti dtzdt; (3.27) 

and 

Substituting the reparametrizations (3.3), (3.4) in (3.24) and (3.26), we are now able to 
calculate the uR-expansions 

m 

F, (L", 8, p-*y, &) = (UR)' Ff: j ( L R ,  p-zy,  &) (3.29) 
j=O 

up to j = 1. Note that the &-dependence of the F;. is denoted explicitly here. Analogously, 
(3.18) now reads 

a(LR, U R , E )  := - i m d x x  F, (LR, uR, X ,  E )  Fz ( L  R R  , U  , x ,  E )  (3.30) 
d -  1 

with x = p-2~. As functions of u and L, the first-order contributions (3.20). (3.21) contain 
E-poles at E = 0. The reason for these uv-divergencies is the vanishing of 

q t ,  t') a I f  - f'l (3.31) 

as t + t'. These singularities in the integrands of (3.24) and (3.26) are not integrable 
for E = 0. In appendix D we explain how the leading contributions cx UE-' and U&' can 
be calculated. The singular terms a U&-' are indeed absorbed by the reparametrizations 
(3.3), (3.4) which we have checked analytically using a symbolic manipulation package. 
As functions of LR the coefficients &j (LR, x ,  e)  of the uR-expansions (3.29) are finite for 
E + 0, which thereby also holds for a(LR, uR, E). 

The contributions cx U&' enter the ratio 

= l + ~ ~ b ( f ) + O ( ~ ~ ~ , ( u ~ ) ~ )  
d l ,  0, E )  

where 

4 1 ,  U R ,  0) 
b ( f )  = a(l,O, 0)  

(3.32) 

(3.33) 

We show in appendix D how the two contributions on the RHS of (3.33) can be calculated 
numerically in d = 4. Table 2 summarizes the necessary data. To calculate bff)  we 
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Table 2. Data for the calculation of integrals (D.26)<D.27) (see Appendix D) in equation (3.33) 
in d = 4. 

f (D.261 0.27) (D.281 (D.291 

1 
2 
3 
4 
5 
6 
8 
IO 
12 

(-0.066. 0,174. -0.137) 
(-0.128, 0.331, -0.137) 
(-0.111, 0.274. -0.135) 
(-0.093, 0,244. -0.132) 
(-0.080, 0.227. -0.129) 
(-0.069. 0.213. -0.lW 
(-0.054, 0.205. -0.123) 
(-0.045. 0.193. -0.119) 
(-0.038. 0.187. -0.116) 

-0.029 
0.066 
0.028 
0.019 
0.018 
0.017 
0.028 
0.029 
0.033 

(0.237. -0.148. -0.019) 
(0.237, -0.116. -0,146) 
(0.188, -0.082. -0.202) 
(0.153. -0.062. -0.229) 
(0.128, -0.050, -0,244) 
(0.110, -0.042, -0.254) 
(0.085, -0.031, -0.266) 
(0.069. -0.025. -0.274) 
(0.059. -0.02T. -0.2791 

0.070 
-0.025 
-0.096 
-0.138 
-0.166 
-0.186 
-0.212 
-0.230 
-0241 

~~ ~~ 

Table 3. Random wak results a(l .  0.0) from (2.21) and corresponding values for b(f). 

f a ( l .  0.0) 

I 0.394 
2 0.394 
3 0.294 
4 0.230 
5 0.188 
6 0.159 
8 0.121 

IO 0.098 
I2 0.082 

b(f) a(Lo,U (1 + $b(f)) ( M f ) ) o  
0.139 0.394 0.415 
0.139 0.394 0.415 

-0.308 0.304 0.269 . .  
-0.690 0.243 0.180 
-i.o50 0.201 0.122 
-1.417 0.i71 0,080 
-2.028 0.131 0.031 
-2.735 0.106 -0.003 
-3.382 0.089 -0.024 

also need the random walk results a(l,O,O) (A& from (2.21). These numbers and the 
ensuing values for b(f) are given in table 3. 

u(1, ER, 1) we try to use the same extrapolation procedure as for 
open chains and ring polymers [19]. For that purpose we approximate the RHS of (3.32) 
by its first-order &-expansion, which leads to an asymptotic asphericity approximant for EV 
star polymers in d = 3 which reads 

To estimate (A3) 

(3.34) 

(for the explicit numbers see again table 3). 
As expected the results for f = 1 and f = 2 agree with our previous finding for open 

polymer chains [19]. Just as for NEV stars the equivalence of the three cases can be proved 
analytically for the first-order terms in the perturbation expansion. 

For large values of f, however, the extrapolation (3.34) fails, since the asphericity 
approximant becomes negative for f % 10. This contradicts the rigorous inequality 

Ad a 0 (3.35) 

which holds for any geometrical object [17] (see equation (1.3)) and thereby also for any 
mean value. On the other hand we, know from section 2 that the mean asphericity for NEV 
stars decays like 9 f - I  for large values of f .  Steric repulsion should increase this decay 
for EV stars so that we should expect a limiting value of zero for f -+ w also in the 
interacting case. 

The simplest approximation which yields the correct f + w-asympotics is to use 
(3.32) for a systematic first-order &-expansion of the reciprocal a(1, 0, E ) / u ( ~ .  uR, E ) .  Now 
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0 2 4 6 

1 0.416 ... 0.429?cO.OM 0.543i0.002 
2 0.416 ... 0.429ztO.002 0.54350.002 
3 0.273.. .  0.30650.001 0.345i0.003 
4 0.193 ... 0.22750.001 0.243&0.001 
5 0.144 ... 0.17750.001 0.185*0.001 
6 0.112 ... 0.14OiO.001 0.146i0.001 

the asymptotic mean asphericity of an Ev'star polymer in d = 3 up to first order in & is 
given by 

(3.36) 

In table 4 we list the numbers for values up to f = 6 together with the results of Monte 
Carlo simulations [ZO] for (A3(f))  and &(f). Note first that the extrapolation according 
to (3~36) only marginally changes the asphericity value for f = i , 2  compared to the results 
of (3.34). In figure 2 we plotted our analytical and the numerical results for (A3(f)) for 
f = 1 . . .6. Additionally the exact result for mv stars is plotted as a broken line to illustrate 
the influence of the EV. 

For f = 1 and f = 2 we observe the same effect as for open chains, i.e. the mean 
asphericity is enlarged by about 5% compared to the non-interacting case. For f 2 3, 
however, the corrections due to the EV have a negative sign. EV star polymers with more 
than three arms are more spherical than their ideal counterparts. This effect is easy to 
understand as the steric repulsion between the polymer arms in d = 3 becomes so strong 
with increasing f that spherical shapes are more favourable than aspherical ones. 

The agreement between our &-expansion results and the Monte Carlo data of Bishop er 
a1 [20] is rather good. In the computer experiment the turning point for the EV influence is 
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found at f = 4. For f = 1,2 the simulation yields a stronger increase of the asphericity 
due to the EV which is about 10% compared to the NEV case. For f = 3 the asphericity is 
found to be nearly equal for NEV and EV stars. In accordance with our analytical results, 
Ev star polymers with f 2 4 are found to be more spherical than non-interacting ones. 
Surprisingly, the corrections due to the EV are now smaller than those given by (3.36) 
indicating that the results of the first order in E expansion are quantitatively reliable only for 
not too large values of f .  To get the correct asymptotic behaviour for f -+ co one has to use 
different approaches, like resummations [28], which lie beyond the present straightforward 
perturbation expansion. 

Although there are no analytical calculations for the asphericity approximant &(f) 
for EV stars, table 4 also contains corresponding simulation data [ZO]. Comparing these 
numbers with the exact solution &(f) for NEV stars in table 1 [22] and the results for 
( A 3 ( f ) ) o  and ( A 3 ( f ) ) ,  we observe the same effect which was previously found for linear 
polymer chains. The simplified asphericity measure (1.6) leads to larger values of the mean 
asphericity itself, whereas the influence of the EV is clearly underestimated. Again the 
reason is the neglecting of correlations between the actual size and the actual shape of the 
polymer coils which are correctly taken into account only in the present mean asphericity 
measure. 

A second important conclusion can be drawn from the comparison of the asymptotic 
values of ( A 3 ( f ) )  and &f). Just as in the NEV case, the difference between these two 
asphericity measures decreases with increasing values of f which leads to the conclusion 
that shape fluctuations are suppressed for star polymers with many arms. This effect, which 
we already observed for NEV stars where it was purely entropic, is now increased as a result 
of the steric repulsion due to the EV. 

4. Summary 

In the present paper we investigated the asymptotic shape properties of monodisperse 
star polymers, consisting of f flexible chains, in dilute solution. The global shape of 
such polymer coils can be characterized by shape parameters which are typically ratios of 
characteristic lengths. We used a field-theoretic approach to calculate the mean asphericity 
parameter, which measures the actual deviation of a polymer coil from spherical shape, both 
for non-interacting star polymers and for those with excluded-volume interaction. 

In the asymptotic limit of infinite molecular weight we find that the distribution functions 
of the shape parameters are universal functions. i.e. they do not depend on details of the 
chemical microstructure. They do, of course, depend on whether there are true many-body 
forces like the EV interaction. In particular we have calculated the first moment of the 
asphericity in d = 3 for values o f f  up to 6. 

For NEV star polymers an exact solution for ( A 3 ( f ) ) 0  is obtained. For f = 1 and f = 2 
we naturally find the same result which was calculated previously for linear polymer chains 
[IS]. As f increases we observe a decrease of the mean asphericity, i.e. star polymers 
with high functionality are typically more spherical than linear chains and those with few 
arms. Our estimates are in excellent agreement with the findings of previous Monte Carlo 
simulations [20]. 

For EV star polymers we set up an RG improved perturbation expansion to calculate an 
estimate for ( A 3 ( f ) )  in the asymptotic limit. For f = 1 and f = 2 our first order in E results 
are also in agreement with those of previous calculations for linear polymer chains [19]. 
Here the mean asphericity was increased by about 54% by the EV. For f 2 3, however, 



The asphericity of star polymers 1485 

the interaction favours more spherical shapes, which is intuitively appealing because of the 
strong repulsion between the polymer arms caused by the Ev for large values of f when the 
space dimension is low. Our results are in good agreement with the data of corresponding 
Monte Carlo simulations [20]. Surprisingly, the negative corrections of the mean asphencity 
which we observe for f 2 3 are larger than those obtained in the computer experiment, 
indicating that the present perturbation theory is valid only for not too large values of f. 

Comparing our findings for the mean asphencity (A&)) with the results which were 
calculated for a simplified asphericity approximant &(f) we cai draw a few important 
conclusions. For small values o f f  the results for (A&)) and &(f) differ significantly, 
which holds for both NEV and EV star polymers. -As the definition of ti&) neglects 
important correlations between the actual linear size and the actual asymmetry of the polymer 
coils, this shows that there are strong shape fluctuations when the number of arms f is not 
too large. With increasing values of f these fluctuations are damped, which follows from 
the decreasing difference between (A&)) and A&). For NEV star polymers this effect is 
purely entropic. For interacting star polymers this trend is even stronger due to the steric 
repulsion between the polymer arms caused by the EV. 

A last remark concerns the different results for (A&)) and &(f) when the influence 
of the EV on the shape asymptotics is investigated. Here our results corroborate previous 
findings from computer simulations [20,21], stating that the asphericity approximant Ad(f) 
overestimates the absolute value of the asphericity, whereas the corrections due to the 
EV come out too small. This is in line with p heuristic argument given by Cannon et 
al [21] which implies that the definition of A&) enlarges the influence of expanded 
polymer configurations compared to that of compact ones. Accordingly the absolute value 
of the mean asphencity comes out too large, whereas the influence of the EV is artificially 
suppressed as the interaction plays a minor’role for expanded structures. 
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Appendix A. Diagonalization of ha,y 

The orthogonal transformation to diagonalize (2.7) proceeds in two steps. First we define a 
transformation with respect to the segment index i and introduce coordinates 

The transformation matrix $ou(i) is given by the Rouse modes of a single Gaussian chain 
which read 

(A.2) 
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Now, (2.7) takes the form 

where the mode energies for U # 0 are given by 

E V ( y )  = e-* sin* (E) + - Y 
fN (-4.5) 

To decouple the @’-modes we use a second transformation with respect to the arm index 
a 

where 

Note that 

and 

I =cut.. st”’ t =o, 1 ,..., f - 1 
U = ]  

(-4.6) 

(A.7) 

guarantee (A.7) to be an orthogonal @ansformation, too. The explicit form of u p  is not 
important since (2.7) is invariant under permutations of the polymer arms. Substituting 
(A.6) into (A.4) we get the final form (2.9)- which is diagonal both in U and f. 

Appendix B. (e-Y“Q)o and free propagator G(a. b; t ,  t’) 

According to equation (2.6), (e-Yr4), can be expressed as the ratio of two partition integrals 
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In the following we calculate the numerator of @.l), the ensuing average follows (up to 
the exponent d )  after dividing by the same expression at y = 0. Introducing 6:) as new 
integration variables we get 

where we expressed the Delta function by its Fourier transform. We can now easily integrate 
over the massless coordinate 

and afterwards also over kl respecting ~ ( 1 )  = l/v% and U O , ~  ~= 1 / n ,  which results in 

f 
A?({kgD = rpu ( l ) cka  (GI - &,a)  

0=2 

Now, all remaining integrations over ($1 can easily be carried out and we arrive at 

03.5) 

Using (A.8) and (A.9) both exponents in (B.6) can be transformed into 

so that a simple rescaling yields 
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The (f - 1)-fold k-integral gives (2,h?)'-f/fl resulting in 

for the numerator in (B.1). Dividing by the same expression at y = 0 we immediately arrive 
at (2.1 1) (up to the trivial exponent d )  and at (2.14) in the continuum limit, respectively. 

Similarly the calculation of the propagator 

(with discrete segment indices) can be traced back to the correlation function of normal 
coordinates which leads to a normalization factor to the expression 

Analogously to the previous manipulation, it can easily be shown that a non-vanishing 
contribution to (B.10) only comes from t = t' 

where 

(B.13) 

Note the restrictions for f and f' in (B.12), which are consequences of the permutation 
symmetry of the polymer arm. Substituting (B.12) into (B.10), this directly implies the 
special structure of the propagator and we anive at (2.19) in the continuum limit. 

Appendix C. Generalized star partition functions and renormalization 

The reparametrizations (3.5), (3.6) can be deduced from those of generalized star partition 
functions, while their reparametrizations ate related to those of special composite operators 
in field theory. 

Consider a generalized star partition function defined as the continuum limit of 

+ ZM(T,T i r  . . . ,T;; T I . .  . . , T M ;  L, U) . 
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Note that the first segments of all chains are fixed at T ,  whereas the end segments are fixed 
at different space positions T A .  The segment density operator is given by 

I N  

o=I j=1 

m ( T ) = e ’ C C S d ( R y ) - T )  

and Tr denotes the integrations 

Equation (C.l) allows us to cast the average of any product of radius of gyration tensor 
components in the form 

where 

.ddrj ZM(T, T ; ,  . . . ,T$; 71,. . . , TM; L ,  U) 

. .ddr j  ZM(T, vi,. . . , T;; L ,  U) 
. (C.5) 

Now, the reparametrization of 2, can be inferred from the reparame~zation of the 
composite operator 181 

(C.6) i ti ,_... r,.rr.h=O 
q q ) ( T )  4 q ) ( T ; ) .  . . 4 f ’ ( T ; & b y ( T l ) ] ” .  . [4+)(TM)]’ ([d 1 

Here @?)(T) denotes the first component of a field @@)(T)  from a set  of^ f n-component 
fields @ I ) ( T ) ,  . . . , @f)(r). The operator [ &, &)(T) ]  requires a Z-factor of the form 
(Z+)f/’(Z*f)-’, where Z,f denotes a special renormalization factor of the f-star vertex 
[8]. An f-fold Laplace transformation of (C.6), which gives an additional factor (p2Zt)-f, 
then leads to the reparametrization for (C.1) 

2.(‘, T i , .  . . , T;; T I , .  . . , TM;  L ,  U) = ( p 4 - y  pM(Z-8) ( z d)’(zr)f-yz*f)-’ 
x Z & ( ~ T ,  P P I , .  . . , pr;; p q ,  . . . , ~ T M ;  L“, U”) . 

3zy(/.hr1,. . .<  LLLLT;; L , U ) 

(C.7) 

Substituting (C.7) in (C.5), Z,f and the Zd-factors drop out and we arrive at 

C . 8 )  Zid R R R  3% = LL 
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with 

~ ( / . T I . .  . . , pTb; LR, U") 
CO 

dd(pr;). . . dd(prj) 2$(p~, p ~ i ,  . .. , p ~ ; ;  p q ,  . . . , p~:; L R R  ,U ) 
1 L M 

-- - 
dd(pr[). . .dd(prj) ZR(pr, pr i ,  . . . , pr;; LR, U") 

(LR)2' L 
(C.9) 

where the remaining Z,-factors have been absorbed in the reparametrization of L. 
Since each Z i  is a function of LR, uR and (distribution in) the various (p~)-arguments, 

which is finite for E + 0, the same property holds for e. Applying (C.4) and ((2.8) to the 
Taylor expansion in y of (tr(Q2))y and (e@"*) leads to equations (3.5) and (3.6) in the 
main text. 

Appendix D. Numerical results of the E-expansion 

To calculate the contributions m U&-' and UE' to (3.24) and (3.26) we have used an obvious 
strategy which we briefly explain for the simple term (e-yV*),. According to (3.25) the 
dimensionless integrand I in 

contains a singular part m It - t'l-'+' which is non-integrable for E = 0. To calculate the 
contributions M E'  and EO to the ensuing (dimensionless) integral 

L 
J = L-' 1 dt dt' I (D.2) 

we used (3.25) together with the definition of the propagator (2.19) to get the singular part 
of I 

where we have introduced suitable coordinates 

f' - t f ' + t  
L L 

*=- T=-. 

Now, the integral J can be split into 

J = J ,  + AJ + O(E) 0 . 5 )  
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where 

Here Js contains orders E - ' ,  8' etc whereas A J  is integrable in d = 4 and of order E'. 

Both integrands in (D.6) and (D.7) are invariant under the substitution (t, f') + (t', t )  so 
that P .2 )  can be cast in the form 

where we have introduced ( T ,  t) as new integration variables. Substituting (D.3) into (D.8) 
one finds explicitly 

Js = $9 cothp- 1) + -(f - 1)8 tanhp + 1-38 cothp -3(f.- 1)8 tanhp -2 j  +Ob) 4 4 
E 

P.9 )  

with 

In order to calculate the first order in uR expression F2; I of the renormalized quantity Fz in 
(3.6) one has to take into account the reparametrizations (3.3), (3.4). (3.7) and (3.8). This 
imp 1 i e s 

1 
(D. 1 1) U ' F ~ ; ~  ( L ~ , x , E )  = U'( --- 18 (-(e-y'QJo) d -(e-y"Q)o; ( 4 7 r ~ ~ ) " ' ~  

E 3 dp 

with 

p = 2  -_ JXiR (D.12) 

The first term on the RHS arises from the zero-order contribution (e-Y"Q)o, when L is 
replaced by LR, and contains a part c( uR&-ILR. Inserting the explicit expressions for 
(e-YwQ)o and J ,  into P.11) one realizes that the E-poles are indeed cancelled by the 
reparametrizations (3.3) and (3.4). For the E' contribution to FZ:~ one finds 

(-I  +Za)(I - 8 cothp - (f - 1)p tanhp) + I + j - - A J  
2 

. .  

(D.13) 
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where 

01 = in(* + 4 h L R .  (D.14) 

We note, for completeness, that the zero order in uR contribution F2o(LR, x, E )  to FZ is, of 
course, given by (2.14) with p replaced by pR. 

The calculation of the second contribution (tr ( Q 2 ) ) 1  proceeds along the same lines so 
that we restrict ourselves to some remarks. AS ~ y J ( t i ,  t;; r ,  t') c( ~t - t'l for t -+ t', 
only the first term in the sum in (3.26) contains a singular part a &-I, whereas the second 
one is integrable for E = 0. For the first term the dimensionless integral of interest is given 
by 

K =L4/dBH 

with 

Again we can split this integral into 

K = Ks + A K  + O(E) 

where 

K s  = / dq L-' l L d t  dt' Hs 

and 

The difference A K is integrable far E = 0 and reads 

AK = L-' dB ( H  - Hs)c=, . s 
Just the same as in (D.6), K b  is of the form 

(D.15) 

(D.16) 

(D.17) 

(D. 18) 

(D.19) 

(D.20) 

(D.21) 
1 

Ks = - K , s , - ~  + K.s.0 + O(E) 
E 

which follows from inserting 

Hs = Irl-'+E/2h(t1,tl;tz,t;) (D.22) 

into (D.18). Due to the complicated form of (D.16) we do not give the explicit function 
h(t1, ti; t z ,  ti) which is, of course, simple but lengthy. 
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The second term in (tr(Q2))l.y is finite in d = 4 and reads 

[TY (b.b';c.c')(t2 I f. 2. 9 t 0 ]2 ,  (D.23) 

The pole cancellation in the uR contribution Fl;l to FI now follows analogously, as for 
F Z I ,  involving lengthy arithmetic which we will not present here in detail. For the E O  

contribution we then find 

uR FI;I (LR, x, 0) = uR (LR)* $[aK,v.-l + K,,o + A K  + P I p - p t .  (D.24) 

For the evaluation of the final results it is important to notice that the (Y factor in (D.13) and 
(D.24) drops ont from b(f) in (3.33). Without giving details we note that this is a direct 
consequence of the pole cancellation discussed above. Accordingly we will set 01 = 0 in 
the following. 

To evaluate b(f), the x-integral, as well as the integrals defining the quantities A J ,  j ;  
& - I ,  K9,0, A K  and P, have been performed numerically. Here we have used 

dnr (LR)' = d,9R$(BR)3 (D.25) 

and the abbreviation F , , j , o  = Fkj(LR,  x ,  0). Explicitly we have calculated the integrals 

with their sum 

(D.26) 

(D.27) 

and 

giving 

l m d x x  ~I~O,O(~Z;I,O)~=~ 

(for the explicit numbers see table 2). 

(D.29) 
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